LLM Security Agent
Specialized agent for detecting security vulnerabilities in Large Language Model (LLM) applications and AI systems.
Overview
The LLM Security Agent analyzes applications that integrate Large Language Models (like GPT, Claude, or other AI systems) for security vulnerabilities specific to AI/ML systems. As LLM applications become more prevalent, new security challenges emerge that traditional security tools don’t address.
Agent Type: Code & Application Security
Complexity: Medium
Scan Duration: 10-30 seconds
Best For: AI/ML applications, LLM integrations, chatbots, AI agents
What It Detects
1. Prompt Injection Vulnerabilities
Detects code vulnerable to prompt injection attacks where malicious user input can manipulate LLM behavior.
Example:
# VULNERABLE
user_input = request.json['message']
prompt = f"You are a helpful assistant. User says: {user_input}"
response = llm.complete(prompt)
# SECURE
user_input = sanitize_input(request.json['message'])
prompt = format_prompt(user_input, role="user")
response = llm.complete(prompt)2. Insecure LLM Output Handling
Identifies cases where LLM outputs are used without proper validation.
Example:
# VULNERABLE - executing LLM-generated code
code = llm.generate_code(user_request)
exec(code) # Dangerous!
# SECURE
code = llm.generate_code(user_request)
if validate_generated_code(code):
exec(code, safe_globals, safe_locals)3. API Key Exposure
Finds hardcoded or improperly stored LLM API keys.
Example:
# VULNERABLE
openai.api_key = "sk-proj-abc123..." # Hardcoded!
# SECURE
openai.api_key = os.getenv("OPENAI_API_KEY")4. Excessive LLM Permissions
Detects LLM agents with overly broad permissions or tool access.
Example:
# VULNERABLE - agent can execute any shell command
tools = [ShellTool(), FileTool(), NetworkTool()]
# SECURE - restricted toolset
tools = [ReadOnlyFileTool(), RestrictedShellTool(allowed_commands=["ls", "cat"])]5. Training Data Poisoning Risks
Identifies potential for training data contamination in fine-tuning pipelines.
Example:
# VULNERABLE - no validation
training_data = fetch_user_submissions()
model.fine_tune(training_data)
# SECURE
training_data = fetch_user_submissions()
validated_data = validate_and_sanitize(training_data)
model.fine_tune(validated_data)6. Model Denial of Service
Detects patterns that could enable attackers to cause expensive LLM calls.
Example:
# VULNERABLE - no rate limiting
@app.route('/ask')
def ask():
question = request.json['question']
return llm.complete(question, max_tokens=4000) # Expensive!
# SECURE
@app.route('/ask')
@rate_limit(max_calls=10, period=60)
def ask():
question = request.json['question']
return llm.complete(question, max_tokens=500)7. Insecure LLM Dependencies
Checks for vulnerable versions of LLM libraries and frameworks.
Example:
# VULNERABLE
langchain==0.0.100 # Old vulnerable version
# SECURE
langchain>=0.1.0 # Updated secure version8. Data Leakage via LLM
Identifies code that may leak sensitive data through LLM prompts.
Example:
# VULNERABLE - sending PII to LLM
prompt = f"Analyze this user: {user.email}, SSN: {user.ssn}"
# SECURE - redact sensitive data
prompt = f"Analyze this user: {redact_pii(user)}"Supported Frameworks & Libraries
- ✅ OpenAI API (GPT-3.5, GPT-4)
- ✅ Anthropic Claude API
- ✅ LangChain
- ✅ LlamaIndex
- ✅ Hugging Face Transformers
- ✅ Google PaLM / Gemini
- ✅ Cohere
- ✅ Custom LLM integrations
Scan Examples
Basic Scan
alprina scan ./ai-app --agent llm_securityWith Specific Profile
alprina scan ./chatbot --profile code-audit --agent llm_securityScan LLM Configuration
alprina scan ./llm-config.yaml --agent llm_securitySample Output
🛡️ LLM Security Agent Scan Results
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Target: ./ai-chatbot
Files Scanned: 23
Duration: 15.3s
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
📊 Findings Summary
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Total: 4 vulnerabilities
Critical: 1
High: 2
Medium: 1
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
🔍 Vulnerabilities
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
1. CRITICAL - Prompt Injection Vulnerability
📍 chatbot/main.py:45
💡 User input directly concatenated into prompt
🔗 CWE-94: Improper Control of Generation of Code
2. HIGH - Hardcoded API Key
📍 config.py:12
💡 OpenAI API key stored in source code
🔗 CWE-798: Use of Hard-coded Credentials
3. HIGH - Unvalidated LLM Output Execution
📍 agents/code_executor.py:89
💡 LLM-generated code executed without validation
🔗 CWE-94: Improper Control of Generation of Code
4. MEDIUM - Excessive LLM Agent Permissions
📍 agents/assistant.py:34
💡 Agent has unrestricted file system access
🔗 CWE-269: Improper Privilege ManagementOWASP LLM Top 10 Coverage
The LLM Security Agent covers all OWASP Top 10 for LLM Applications:
- ✅ LLM01: Prompt Injection
- ✅ LLM02: Insecure Output Handling
- ✅ LLM03: Training Data Poisoning
- ✅ LLM04: Model Denial of Service
- ✅ LLM05: Supply Chain Vulnerabilities
- ✅ LLM06: Sensitive Information Disclosure
- ✅ LLM07: Insecure Plugin Design
- ✅ LLM08: Excessive Agency
- ✅ LLM09: Overreliance
- ✅ LLM10: Model Theft
Best Practices
Secure Prompt Engineering
# Use structured prompts
from alprina.llm import SafePromptTemplate
template = SafePromptTemplate(
system="You are a helpful assistant.",
user_input_sanitizer=sanitize_input,
output_validator=validate_response
)
response = template.complete(user_message)API Key Management
# Store keys securely
from alprina.secrets import SecretManager
secrets = SecretManager()
api_key = secrets.get("OPENAI_API_KEY")
openai.api_key = api_keyOutput Validation
# Validate all LLM outputs
from alprina.llm import OutputValidator
validator = OutputValidator(
max_length=1000,
forbidden_patterns=[r'<script>', r'eval\('],
require_json=True
)
response = llm.complete(prompt)
safe_response = validator.validate(response)Integration Examples
LangChain
from langchain import OpenAI, PromptTemplate
from alprina.langchain import SecureChain
# Wrap your chain with security
llm = OpenAI(temperature=0.7)
secure_chain = SecureChain(
llm=llm,
input_sanitizer=sanitize_input,
output_validator=validate_output,
rate_limit=RateLimit(max_calls=100, period=3600)
)Custom LLM Integration
from alprina.llm import SecureLLMWrapper
class MyLLM(SecureLLMWrapper):
def __init__(self):
super().__init__(
provider="custom",
validate_prompts=True,
sanitize_outputs=True
)
def complete(self, prompt):
# Your LLM logic with built-in security
return super().complete(prompt)Common Vulnerabilities Fixed
Before
# MULTIPLE ISSUES
@app.route('/chat', methods=['POST'])
def chat():
user_msg = request.json['message']
prompt = f"User: {user_msg}" # Prompt injection!
response = openai.Completion.create(
engine="gpt-4",
prompt=prompt,
max_tokens=4000, # DoS risk!
api_key="sk-..." # Hardcoded key!
)
return exec(response.choices[0].text) # Code injection!After
# SECURE
from alprina.llm import SecureLLM, sanitize_input, validate_code
import os
llm = SecureLLM(
api_key=os.getenv("OPENAI_API_KEY"),
rate_limiter=RateLimit(max_calls=10, period=60)
)
@app.route('/chat', methods=['POST'])
@llm.rate_limit
def chat():
user_msg = sanitize_input(request.json['message'])
response = llm.complete(
prompt=user_msg,
max_tokens=500,
temperature=0.7
)
validated = validate_code(response.text)
return {"response": validated}Performance
- Scan Speed: 10-30 seconds for typical applications
- False Positive Rate: ~5%
- Detection Accuracy: ~95%
- Supported Languages: Python, JavaScript, TypeScript, Java
Limitations
- Cannot detect runtime prompt injection attacks
- Limited analysis of proprietary LLM implementations
- Requires application code (not black-box testing)
- May not catch all novel attack vectors
Related Agents
- Code Security Agent - General code security
- Guardrails Agent - Safety and compliance
- Red Team Agent - Offensive testing
Further Reading
- OWASP Top 10 for LLM Applications
- LLM Security Best Practices
- AI/ML Security Guide
- Prompt Injection Prevention
Feedback
This is a new agent! Help us improve: